Dose verification based on proton-induced positron emitters is a promising quality assurance tool and may leverage the strength of artificial intelligence. To move a step closer towards practical application, the sensitivity analysis of two factors needs to be performed: biological washout and depth selection. selection. A bi-directional recurrent neural network (RNN) model was developed. The training dataset was generated based upon a CT image-based phantom (abdomen region) and multiple beam energies/pathways, using Monte-Carlo simulation (1 mm spatial resolution, no biological washout). For the modeling of biological washout, a simplified analytical model was applied to change raw activity profiles over a period of 5 minutes, incorporating both physical decay and biological washout. For the study of depth selection (a challenge linked to multi field/angle irradiation), truncations were applied at different window lengths (100, 125, 150 mm) to raw activity profiles. Finally, the performance of a worst-case scenario was examined by combining both factors (depth selection: 125 mm, biological washout: 5 mins). The accuracy was quantitatively evaluated in terms of range uncertainty, mean absolute error (MAE) and mean relative errors (MRE). Our proposed AI framework shows good immunity to the perturbation associated with two factors. The detection of proton-induced positron emitters, combined with machine learning, has great potential to implement online patient-specific verification in proton therapy.
translated by 谷歌翻译
Generative models have been widely applied to solve extractive tasks, where parts of the input is extracted to form the desired output, and achieved significant success. For example, in extractive question answering (QA), generative models have constantly yielded state-of-the-art results. In this work, we identify the issue of tokenization inconsistency that is commonly neglected in training these models. This issue damages the extractive nature of these tasks after the input and output are tokenized inconsistently by the tokenizer, and thus leads to performance drop as well as hallucination. We propose a simple yet effective fix to this issue and conduct a case study on extractive QA. We show that, with consistent tokenization, the model performs better in both in-domain and out-of-domain datasets, with a notable average of +1.7 F2 gain when a BART model is trained on SQuAD and evaluated on 8 QA datasets. Further, the model converges faster, and becomes less likely to generate out-of-context answers. With these findings, we would like to call for more attention on how tokenization should be done when solving extractive tasks and recommend applying consistent tokenization during training.
translated by 谷歌翻译
Diverse data formats and ontologies of task-oriented dialogue (TOD) datasets hinder us from developing general dialogue models that perform well on many datasets and studying knowledge transfer between datasets. To address this issue, we present ConvLab-3, a flexible dialogue system toolkit based on a unified TOD data format. In ConvLab-3, different datasets are transformed into one unified format and loaded by models in the same way. As a result, the cost of adapting a new model or dataset is significantly reduced. Compared to the previous releases of ConvLab (Lee et al., 2019b; Zhu et al., 2020b), ConvLab-3 allows developing dialogue systems with much more datasets and enhances the utility of the reinforcement learning (RL) toolkit for dialogue policies. To showcase the use of ConvLab-3 and inspire future work, we present a comprehensive study with various settings. We show the benefit of pre-training on other datasets for few-shot fine-tuning and RL, and encourage evaluating policy with diverse user simulators.
translated by 谷歌翻译
Scene text recognition (STR) enables computers to recognize and read the text in various real-world scenes. Recent STR models benefit from taking linguistic information in addition to visual cues into consideration. We propose a novel Masked Vision-Language Transformers (MVLT) to capture both the explicit and the implicit linguistic information. Our encoder is a Vision Transformer, and our decoder is a multi-modal Transformer. MVLT is trained in two stages: in the first stage, we design a STR-tailored pretraining method based on a masking strategy; in the second stage, we fine-tune our model and adopt an iterative correction method to improve the performance. MVLT attains superior results compared to state-of-the-art STR models on several benchmarks. Our code and model are available at https://github.com/onealwj/MVLT.
translated by 谷歌翻译
基于文本的视觉问题回答〜(TextVQA)旨在为具有多个场景文本的图像问题提供正确的答案。在大多数情况下,文本自然附着在物体表面上。因此,文本和对象之间的空间推理在文本VQA中至关重要。但是,现有方法在从输入图像中学到的2D空间信息中受到限制,并依靠基于变压器的体系结构在融合过程中隐含地推理。在此设置下,这些2D空间推理方法无法区分同一图像平面上的视觉对象和场景文本之间的细颗粒空间关系,从而损害了TextVQA模型的可解释性和性能。在本文中,我们将3D几何信息引入了类似人类的空间推理过程,以逐步捕获关键对象的上下文知识。 %我们通过引入3D几何信息来捕获关键对象的上下文知识来制定类似人类的空间推理过程。为了增强模型对3D空间关系的理解,特别是(i)〜我们提出了一个关系预测模块,以准确定位关键对象的关注区域; (ii)〜我们设计了一个深度感知的注意校准模块,以根据关键对象校准OCR令牌的注意力。广泛的实验表明,我们的方法在TextVQA和ST-VQA数据集上实现了最先进的性能。更令人鼓舞的是,我们的模型在涉及TextVQA和ST-VQA有效拆分中的空间推理的问题上以5.7 \%和12.1 \%的明显边缘超过了他人。此外,我们还验证了模型对基于文本的图像字幕任务的普遍性。
translated by 谷歌翻译
由于没有大型配对的文本形状数据,这两种方式之间的大量语义差距以及3D形状的结构复杂性,因此文本指导的3D形状生成仍然具有挑战性。本文通过引入2D图像作为垫脚石来连接两种方式并消除对配对的文本形状数据的需求,提出了一个名为“图像”的新框架,称为“垫脚石”(ISS)。我们的关键贡献是一种两阶段的功能空间对准方法,它通过利用具有多视图Supperions的预训练的单视重构造(SVR)模型来映射剪辑功能以形成形状:首先将剪辑图像剪辑剪辑功能到详细信息 - SVR模型中的丰富形状空间,然后将剪辑文本功能映射到形状空间,并通过鼓励输入文本和渲染图像之间的剪辑一致性来优化映射。此外,我们制定了一个文本制定的形状样式化模块,以用新颖的纹理打扮出输出形状。除了从文本上生成3D Shape生成的现有作品外,我们的新方法是在不需要配对的文本形状数据的情况下创建形状的一般性。实验结果表明,我们的方法在忠诚度和与文本一致性方面优于最先进的和我们的基线。此外,我们的方法可以通过逼真的和幻想结构和纹理对生成的形状进行样式化。
translated by 谷歌翻译
这里介绍了人工智能研究所(IARAI)组织的2022年Landslide4sense(L4S)竞赛的科学结果。竞争的目的是根据全球收集的卫星图像的大规模多个来源自动检测滑坡。 2022 L4S旨在促进有关使用卫星图像的语义分割任务的深度学习模型(DL)模型最新发展的跨学科研究。在过去的几年中,由于卷积神经网络(CNN)的发展,基于DL的模型已经达到了对图像解释的期望。本文的主要目的是介绍本次比赛中介绍的细节和表现最佳的算法。获胜的解决方案详细介绍了Swin Transformer,Segformer和U-NET等最先进的模型。还考虑了先进的机器学习技术和诸如硬采矿,自我培训和混合数据增强之类的策略。此外,我们描述了L4S基准数据集,以促进进一步的比较,并在线报告准确性评估的结果。可以在\ textIt {未来开发排行榜上访问数据,以供将来评估,\ url {https://www.iarai.ac.ac.at/landslide4sense/challenge/},并邀请研究人员提交更多预测结果,评估准确性在他们的方法中,将它们与其他用户的方法进行比较,理想情况下,改善了本文报告的滑坡检测结果。
translated by 谷歌翻译
我们介绍了一项对自然语言(NL)推理的人类通知,开放域和逻辑上复杂且多样的数据集,配备了一阶逻辑(fol)注释。对开本由1,435个示例(独特的结论)组成,每个示例与487组前提之一搭配,这些场所作为规则,可用于演绎理由,以理解每个结论的有效性。前提和结论的逻辑正确性是通过其平行注释来确保的,这些注释会自动由我们的FOL推理引擎验证。除了主要的NL推理任务外,对开本中的NL-FOL对自动构成了使用FOL作为逻辑形式的新的NL-FOL翻译数据集。我们对广泛的实验系统地评估了对中型语言模型(BERT,ROBERTA)进行微调的FOL推理能力,并且在大型语言模型(GPT-NEOX,OPT,OPT,GPT-3,Codex)上促成了很少的射击。对于NL-FOL翻译,我们尝试使用GPT-3和Codex。我们的结果表明,公开可用的最强大的大语言模型之一(LLM),GPT-3 Davinci,仅比随机结果略好,而在一部分集的一部分中,该模型尤其不好,并且在预测该模型方面尤其不好。纠正虚假和未知结论的真实价值。我们的数据集和代码可在https://github.com/yale-lily/folio上找到。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
从长序列中提取监督信号以进行预测是机器学习中的一项艰巨任务,尤其是当输入序列中的所有元素并非同等贡献所需的输出时。在本文中,我们提出了Spandrop,这是一种简单有效的数据增强技术,可帮助模型以很少的示例以很少的示例识别真实的监督信号。通过直接操纵输入序列,Spandrop一次随机消融序列的一部分,并要求模型执行相同的任务以模拟反事实学习并获得输入属性。基于对其属性的理论分析,我们还根据β-伯努利分布提出了spandrop的变体,该变体产生了不同的增强序列,同时提供了一个与原始数据集更一致的学习目标。我们证明了Spandrop在一系列精心设计的玩具任务中的有效性,以及各种自然语言处理任务,这些任务需要长时间的推理才能得出正确的答案,并证明它有助于在数据稀缺和稀缺时改善模型的性能丰富。
translated by 谷歌翻译